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This  work  reports  on the  analytical  performance  of  glassy  carbon  electrodes  (GCE)  modified  with  a  disper-
sion of  multi-wall  carbon  nanotubes  (MWCNT)  in  polyhistidine  (Polyhis)  (GCE/MWCNT–Polyhis)  for the
simultaneous  determination  of  ascorbic  acid  (AA)  and  paracetamol  (PA).  The  modified  electrode  exhibited
enhanced  current  responses  and  lower  oxidation  overvoltages,  demonstrating  excellent  catalytic  activ-
ities  towards  AA and  PA  oxidation  compared  to  bare  GCE.  The  linear  dependence  between  the  anodic
peak  currents  and  the  square  root  of  scan  rates  over  the  range  of  0.005–0.300  V  s−1 demonstrate  that  the
electrooxidation  of  AA and  PA occurs  under  diffusional  control.  The  MWCNT–Polyhis  modified  GCE  dis-
scorbic acid
aracetamol
arbon nanotubes dispersion
olyhistidine
lassy carbon electrode
ifferential pulse voltammetry

played a  sensitivity  of  (3.8  ± 0.1)  × 104 �A M−1 (r = 0.998)  and  a  detection  limit  of  0.76  �M for  the  selective
determination  of  AA  in the  presence  of 1.00  ×  10−4 M  PA.  Conversely,  for the  direct  quantification  of  PA
in  the  presence  of 5.00  × 10−4 M AA,  the  sensitivity  and the  detection  limit  were  (6.3  ± 0.2)  × 105 �A  M−1

(r  =  0.997)  and  32 nM,  respectively.  The  proposed  electrochemical  sensor  was  successfully  applied  for
quantifying  AA  and  PA  in  commercial  pharmaceutical  formulations  without  any  sample  pretreatment.
harmaceutical samples

. Introduction

Ascorbic acid (vitamin C, AA) plays an important role in several
nzymatic reactions and in the defense against oxidative stress,
cting as a radical scavenger in different metabolic processes that
nvolve redox mechanisms. In addition, AA is extensively used for
he prevention and treatment of the common cold, some mental ill-
esses, and cancer [1,2]. Due to these properties, AA is widely used
s antioxidant agent in foods, drinks, and pharmaceutical products.
aracetamol (acetaminophen, PA) is a non-salicylate drug com-
only used for fever, headaches, and minor pain relief [3].  Since
A and PA are active principles commonly found either solely or in
ombination in pharmaceutical formulations, it is very important
or the pharmaceutical industry to have a simple and fast method
or the routine determination of these compounds.

A wide variety of analytical techniques, such as titrimetry,
pectrophotometry, and chromatography have been reported for
he determination of AA [4–13] and PA [14–20].  However, these
ethods are generally time-consuming and require laborious sam-
le pretreatment. Since AA and PA are electroactive compounds,

∗ Corresponding authors. Tel.: +54 351 4334169/80; fax: +54 351 4334188.
E-mail addresses: mlpedano@fcq.unc.edu.ar (M.L. Pedano),
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925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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© 2012 Elsevier B.V. All rights reserved.

electrochemical sensors represent an interesting alternative for
their quantification.

Due to their unique properties, carbon nanotubes (CNTs) have
increasingly been used for the construction of electrochemical sen-
sors aiming to improve their analytical response [21–23].  Still, one
of the problems for the preparation of CNT-based sensors is their
poor solubility in polar solvents. In this sense, several strategies for
dispersing CNTs and immobilizing them on the surface of electro-
chemical transducers have been attained and have demonstrated
to be very important for sensing diverse analytes [21].

Recently, we  have reported the efficient dispersion of multi-
wall carbon nanotubes (MWCNTs) in the polycation polyhistidine
(Polyhis), and the excellent performance of the electrochemical
sensors based on the modification of glassy carbon electrodes
(GCEs) with this dispersion [24]. The resulting electrodes have been
successfully used for the sensitive and selective electrocatalytic
detection of uric acid (UA) or dopamine (Do) in the presence of
AA.

In this work, we propose the use of GCEs modified with
MWCNT–Polyhis dispersion as a sensing layer for the highly selec-
tive quantification of AA and/or PA in 0.050 M phosphate buffer
pH 7.40. Cyclic voltammetry was  used to investigate the elec-

trocatalytic activity of the modified electrode towards AA and
PA, and differential pulse voltammetry was  employed for the
quantification of these analytes. The analytical performance of
GCE/MWCNT–Polyhis was evaluated determining AA and PA in

dx.doi.org/10.1016/j.snb.2012.07.087
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
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Fig. 1. Cyclic voltammograms obtained at bare GCE (dotted line) and
−4
P.R. Dalmasso et al. / Sensors a

ommercial pharmaceutical samples containing both or one of
hese analytes without pretreatment.

. Experimental

.1. Reagents

Polyhis (catalog number P9386) was obtained from Sigma.
scorbic acid (AA) was purchased from Baker, and paracetamol

PA) was from A.N.M.A.T. Argentina. MWCNTs of 15–45 nm diam-
ter and 1–5 �m length were obtained from NanoLab, USA. The
harmaceutical formulations, were purchased from local pharma-
ies and used as received without any further purification. The
rand name and composition of AA and PA formulations are the
ollowing: Factus (100 mg  AA, 250 mg  PA, and excipients), Bayaspi-
ina C Effervescent (240 mg  AA, 400 mg  aspirin, and excipients),
edoxon Effervescent (1000 mg  AA and excipients), Redoxon Drops
200 mg  mL−1 AA and excipients), Raffo (1000 mg  PA and excip-
ents), and Tafirol (500 mg  PA and excipients). Ultrapure water
� = 18 M�  cm)  from a Millipore-MilliQ system was  used to pre-
are all the solutions. Polyhis solutions were prepared in 75:25
v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The stock
olutions of PA and AA were prepared in 0.050 M phosphate buffer
H 7.40 before starting each set of experiments, covered with alu-
inum foil, and stored in ice bath.

.2. Apparatus

The electrochemical measurements were performed with
PSILON (BAS) and TEQ 02 potentiostats. A conventional three-
lectrode system was inserted into the cell (BAS, Model MF-1084)
hrough holes in its Teflon cover. GCEs (3 mm diameter, from CH
nstruments) modified with MWCNT dispersed in Polyhis were
sed as working electrodes, a platinum wire and a Ag/AgCl, 3 M NaCl
BAS, Model RE-5B) were used as counter and reference electrodes,
espectively. All potentials are referred to the latter. A magnetic
tirrer provided the convective transport during the amperometric
easurements.

.3. Preparation of the MWCNT–Polyhis dispersion

The dispersion of MWCNT in Polyhis was obtained by mixing
.00 mg  of MWCNTs with 1.00 mL  of 0.25 mg  mL−1 Polyhis solution
ollowed by sonication for 30 min.

.4. Preparation of GCE modified with MWCNT–Polyhis
ispersion (GCE/MWCNT–Polyhis)

GCEs were polished with alumina slurries of 1.0, 0.30, and
.05 �m for 1 min  each. After polishing, the electrodes were rinsed
ith water and cycled 10 times in supporting electrolyte between
0.200 V and 0.800 V at 0.100 V s−1. They were modified with an
liquot of 10 �L of MWCNT–Polyhis dispersion dropped on the top
f the polished GCE, allowing the solvent to evaporate at room
emperature.

.5. Procedure

The electrochemical experiments were carried out in a 0.050 M
hosphate buffer solution pH 7.40. Differential pulse voltammetry
DPV) parameters were the following: a pulse height of 0.004 V,
 pulse amplitude of 0.050 V, a period of 200 ms,  and a potential
ange between −0.200 V and 0.500 V. Amperometric experiments
ere performed by applying the desired potential (0.000 V) and

llowing the transient current to reach a steady-state value prior to
GCE/MWCNT–Polyhis (solid line) for a mixture of 5.00 × 10 M AA and
5.00 × 10−4 M PA. The inset shows the cyclic voltammogram at GCE. Supporting
electrolyte: 0.050 M phosphate buffer solution pH 7.40. Scan rate: 0.100 V s−1.

the addition of the analyte and the subsequent current monitoring.
All the experiments were conducted at room temperature.

2.6. Preparation of real samples

Different drugs containing either AA, PA or both of them (see
Section 2.1)  were used to evaluate the analytical performance of
the proposed sensor. The solid samples (tablets) were dissolved
in 0.050 M phosphate buffer solution pH 7.40 to prepare the stock
solutions. The liquid sample was  conveniently diluted with 0.050 M
phosphate buffer solution pH 7.40 to obtain the stock solution.
These stock solutions were further diluted with the same buffer
solution to obtain the desired concentration.

3. Results and discussion

3.1. Electrochemical behavior of AA and PA at MWCNT–Polyhis
modified GCE

Fig. 1 shows cyclic voltammograms for a mixture of
5.00 × 10−4 M AA and 5.00 × 10−4 M PA at bare GCE (dotted line)
and GCE/MWCNT–Polyhis (solid line). The inset displays more
clearly the electrochemical behavior of the AA and PA mixture at
bare GCE. As can be seen, the oxidation peaks for AA and PA are
overlapped and present low currents at bare GCE, indicating slow
electron transfer kinetics. On the contrary, two well-defined oxida-
tion peaks are evident at the MWCNT–Polyhis modified GCE, one at
−0.012 V and the other at 0.385 V for AA and PA, respectively. There-
fore, the AA and PA peak potential separation is large enough to
ensure the simultaneous determination of both compounds at the
modified electrode. The currents and potentials for AA and PA oxi-
dation at modified and unmodified GCEs are summarized in Table 1.
The enhancement in the AA and PA oxidation peak current (almost
4 and 7 times for AA and PA, respectively) is mainly attributed
to the significant increment in the electroactive area of the elec-
trode due to the presence of MWCNTs. On the other hand, there is a
decrease in the oxidation overvoltage for both compounds (292 mV
for AA and 40 mV  for PA) and an important improvement in the
reversibility of PA electrooxidation (the peak separation decreases

in 175 mV). These results indicate that MWCNTs catalyses AA and
PA oxidation and that even after the dispersion within the Polyhis
matrix, MWCNTs kept their electrocatalytic activity. The important
improvement in the reversibility for PA electrooxidation could be
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Table 1
Cyclic voltammetry parameters for 5.00 × 10−4 M AA and 5.00 × 10−4 M PA at bare GCE, and GCE modified with MWCNT–Polyhis dispersion. Other conditions as in Fig. 1.

Electrode AA PA

Epa Ipa Epa Epc �E  Ipa Ipc

5 V 

5 V 

e
s

d
G
r
i
r
e
(
A
e
M
v
t
o
e
0

F
0
s
0
s

Bare GCE 0.280 V 10.7 �A 0.42
GCE/MWCNT–Polyhis −0.012 V 44.0 �A 0.38

xplained through the interaction of its aromatic structure with the
p2-like-planes at some exposed walls of MWCNTs [25].

Fig. 2A displays cyclic voltammograms for AA obtained at
ifferent scan rates (v) in the range of 0.005–0.300 V s−1 at
CE/MWCNT–Polyhis. The results showed that increasing the scan

ate, the AA oxidation peak current (Ipa) increases. The correspond-
ng plot for the anodic peak current (Ipa) as a function of the square
oot of the scan rate (v1/2) is shown as inset in Fig. 2A. The lin-
ar relationship between Ipa and v1/2 (Ipa (�A) = 139.15v1/2 − 0.92
r = 0.998)) demonstrates that the electrochemical oxidation of
A at GCE/MWCNT–Polyhis is a diffusion-controlled process. The
ffect of the scan rate on the electrochemical response of PA at
WCNT–Polyhis modified GCE was also studied and the cyclic

oltammograms are depicted in Fig. 2B. Similar to AA, the oxida-

ion peak currents increase with the scan rate increment and the
xidation peak potentials shift towards more positive values. A lin-
ar relationship between Ipa and v1/2 is found within the range from
.005 to 0.300 V s−1 (Ipa (�A) = 312.23v1/2 − 3.04), with a correlation

ig. 2. Cyclic voltammograms for 5.00 × 10−4 M AA (A) and 5.00 × 10−4 M PA (B) in
.050 M phosphate buffer solution pH 7.40 on MWCNT–Polyhis modified GCEs at
can  rates of (a) 0.005, (b) 0.010, (c) 0.025, (d) 0.050, (e) 0.100, (f) 0.200, and (g)
.300 V s−1. Each inset plot shows the variation of the anodic peak current with the
quare root of scan rate.
0.155 V 0.270 V 12.0 �A 7.4 �A
0.290 V 0.095 V 85.0 �A 58.0 �A

coefficient of 0.998 (see inset in Fig. 2B), indicating that the elec-
trooxidation process is controlled by the diffusion of PA to the
GCE/MWCNT–Polyhis. Hence, the overall results suggest that a pre-
concentration step is not necessary, simplifying the procedure and
reducing the analysis time for routine determinations of AA and PA.

3.2. Analytical application of GCE/MWCNT–Polyhis

DPV was  used to obtain a sensitive and selective quantification
of AA and PA. Fig. 3A displays the DPV response for increas-
ing concentrations of AA from 2.50 × 10−5 to 2.50 × 10−3 M at
MWCNT–Polyhis modified GCE in the presence of 1.00 × 10−4 M
PA. Well-defined DPV peaks are obtained for the oxidation of AA
and PA with peak potentials at 0.062 V and 0.330 V, respectively.
The corresponding calibration plot (Fig. 3B) shows a linear relation-
ship between current and AA concentration up to 1.25 × 10−3 M AA
with an average sensitivity of (3.8 ± 0.1) × 104 �A M−1, and a corre-
lation coefficient of 0.995 (values obtained from 5 different sensors
and three different dispersions). In the precedent conditions, the
detection limit for AA was  0.76 �M (taken as 3.3�/S, where � is the
standard deviation of the blank signal and S, the sensitivity), and
the quantification limit was  2.3 �M (taken as 10�/S). The sensitivity
for AA obtained in the absence of PA was (3.9 ± 0.2) × 104 �A M−1

(r = 0.997). The small difference in sensitivity for AA in the absence
and presence of PA (2.7%), clearly demonstrate the feasibility to
determine AA and PA in mixtures of both compounds using the
GCE/MWCNT–Polyhis without statistical interference.

DPV recordings and the corresponding calibration plot obtained
at GCE/MWCNT–Polyhis for different concentrations of PA from
2.50 × 10−7 to 1.00 × 10−5 M in the presence of 5.00 × 10−4 M AA,
are shown in Fig. 3C and D, respectively. The analytical character-
istics for PA in the presence of AA are the following: linear range
up to 5.00 × 10−6 M,  average sensitivity of (6.3 ± 0.2) × 105 �A M−1,
correlation coefficient of 0.997 (values obtained from 6 different
sensors and three different dispersions), detection and quantifica-
tion limits of 32 nM and 97 nM,  respectively (obtained as indicated
previously). The difference in sensitivity for PA obtained in the pres-
ence and absence of AA at the proposed sensor was only 4.5% (the
sensitivity of PA in the absence of AA was  (6.6 ± 0.4) × 105 �A M−1,
r = 0.994). Moreover, compared to the analytical performance of
some recently reported sensors for the simultaneous measurement
of AA and PA [26–31],  this one presents several advantages stand-
ing out the lower detection limit for both analytes, demonstrating
the competitiveness and efficiency of our sensor.

In order to evaluate the practical application of the proposed
electrochemical sensor, the MWCNT–Polyhis modified GCE was
employed to determine the content of AA and PA in different com-
mercial pharmaceutical samples by DPV.

The results obtained for the quantification of AA and PA in dif-
ferent pharmaceutical samples are listed in Table 2 and Table 3,
respectively. It is important to remark that the sensor was  chal-
lenged with a medicine (Factus) that contains, in addition to the
excipients, both AA and PA, and that it was possible to simultane-
ously quantify both of them in very good accordance compared to

the values reported by the pharmaceutical laboratory. The values
found for AA and PA in the rest of the samples (n = 3) were also
in good agreement with the values declared in the labels, demon-
strating that the sensor proposed here is reliable, selective, and
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Fig. 3. (A) Differential pulse voltammetry response at GCE/MWCNT–Polyhis for mixtures containing 1.00 × 10−4 M PA and increasing concentrations of AA between 2.50 × 10−5

and 2.50 × 10−3 M.  (B) Calibration plot obtained from the DPV recordings shown in (A). (C) Differential pulse voltammograms at GCE/MWCNT–Polyhis for different concentra-
tions  of PA between 2.50 × 10−7 and 1.00 × 10−5 M in the presence of 5.00 × 10−4 M AA. (D) Calibration plot obtained from the DPV recordings shown in (C). Other conditions
as  in Fig. 1. Pulse height: 0.004 V; pulse amplitude: 0.050 V; period: 200 ms.

Table 2
Determination of ascorbic acid in pharmaceutical formulations (n = 3) using MWCNT–Polyhis modified GCEs by differential pulse voltammetry (DPV) and amperometry
(AMP)  performed at 0.000 V.

Tablet/drops
name

Labeled
content

Electrochemical
technique

Determined
content

R.S.D. (%) Error (%)

Factus 100 mg
DPV 94 mg  7.7 −6.0
AMP  101 mg  3.6 1.0

Bayaspirina C
Effervescent

240 mg
DPV 235 mg 4.7 −2.1
AMP  236 mg 2.1 −1.7

Redoxon Effervescent 1000 mg
DPV 978 mg 3.8 −2.2
AMP  994 mg 5.0 −0.6

s
i

t
c
a

T
D
M

Redoxon Drops 200 mg  mL−1 DPV 

AMP  

ensitive enough to be applied for the determination of AA and PA
n real pharmaceutical formulations.

In addition to DPV determinations, the proposed sensor offers

he possibility to perform the electrochemical analysis of commer-
ial AA formulations from amperometric recordings at a potential
s low as 0.000 V without interference of PA (see Table 2). The

able 3
etermination of paracetamol in pharmaceutical formulations (n = 3) using
WCNT–Polyhis modified GCEs by differential pulse voltammetry.

Tablet name Labeled content Determined content R.S.D. (%) Error (%)

Raffo 1000 mg  963 mg  5.2 −3.7
Tafirol 500 mg  504 mg 5.6 0.8
Factus 250 mg  258 mg  1.2 3.2
194 mg mL−1 3.5 −3.0
205 mg mL−1 2.5 2.5

values determined by this methodology also presented a very good
agreement with the ones informed by the suppliers.

4. Conclusions

The combination of the unique and outstanding catalytic prop-
erties of CNTs with the efficiency of Polyhis to disperse CNTs, the
stability and reproducibility of the GCE modified with the disper-
sion, and the huge increase in the electroactive area of the resulting
electrode, was successfully used for the simultaneous detection of
AA and PA by differential pulse voltammetry. The new strategy was

used for the quantification of AA and PA in pharmaceutical for-
mulations without sample pretreatment. We  are proposing here
a simple, fast, sensitive and selective electrochemical sensor for
the simultaneous quantification of AA and PA, offering interesting
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